

DISTRUBITION A. Approved for public release; distribution is unlimited

15 MAR 2011

Reference: Government Contract No. N00014-09-C-0050, “Enhancing Simulation-based
Training Adversary Tactics via Evolution (ESTATE)”
Charles River Analytics Contract No. C08098

Subject: Contractor’s Status Report: Quarterly Status Report #9
Reporting Dates: 12/15/2010 – 3/15/2011

Dear Dr. Hawkins,

The following is the Contractor’s Quarterly Status Report for the subject contract for the
indicated period. During this reporting period we have concentrated on Task 4: Develop Trainee
Model Processing, Task 6: Simulation-based Training System Integration and Task 8: Transition

1. Summary of Progress

1.1 Transition Opportunities with USMC TECOM

During the indicated period, we have been in discussions with USMC Training and Education
Command (TECOM) MAGTF Training Simulations Division (TSD) to inform the community of
the training systems capabilities being developed under ESTATE along with the PROMPTER
framework. Our discussions have led to potential interest from several different avenues
including Marine Corps University, College of Distance Education and Training (CDET), the
Marine Corps Warfighting Laboratory (MCWL), USMC Center for Advanced Operational
Culture Learning (CAOCL), and PM Training Systems (TRASYS). To better describe how the
pieces fit together, a high-level diagram was provided along with overview materials and movies
for each capability. This diagram is displayed below in Figure 1. The architecture is divided into
two areas. The left-hand side describes the layered model for providing microgame-based
training while the right-hand side describes the layered model for providing simulation-based
training. Each training method is divided into a content, execution, and delivery layer. At the
content layer, user communities (e.g., training staff) develop the training material. At the
execution layer, the system provides the necessary logic that backs the training experience. The
trainee participates in the training via the delivery layer. For microgame-based training, this may
be delivered via a mobile, web-based, or desktop application. For simulation-based training, this
is provided through a simulation environment (e.g., VBS2). ESTATE currently sits as an
additional service in the execution layer. The ESTATE Adaptation Engine modifies the content
to maximize training efficacy. Our current work is integrating with the microgame-based training
system on the left side, using the performance history of the trainee interacting with the
PROMPTER framework to adapt challenges. Future integration could also support the ESTATE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 MAR 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Enhancing Simulation-based Training Adversary Tactics Via Evolution
(ESTATE)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Charles River Analytics, Inc,625 Mount Auburn
St.,Cambridge,MA,02136

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

DISTRUBITION A. Approved for public release; distribution is unlimited

 2

adaptation engine with the PersonaTM run-time engine for providing sophisticated, intelligent
behavior to virtual characters in simulated environments.

Figure 1: Integrated Training System Architecture

1.2 Integrating ESTATE with PROMPTER Framework

Last reporting period, we elected to integrate ESTATE with the PROMPTER framework, an on-
going effort funded by the U.S. Army Aeromedical Research Laboratory (USAARL) that uses a
microgame-based training to improve the comprehension and recall of first-aid procedures.
PROMPTER provides ESTATE with a well-defined challenge domain to apply adaptive
training. However, the PROMPTER framework needed to be expanded to support adaptive
training. The envisioned integration design is shown in Figure 2.

DISTRUBITION A. Approved for public release; distribution is unlimited

 3

Figure 2. ESTATE-PROMPTER simulation framework integration design

As described in the last progress report, the PROMPTER server is a RESTful database used to
store progress made by players as they progress through the game challenges. Originally, the
PROMPTER framework only supported the ability to store progress, there was no method by
which to specify the challenges that players were given. During the indicated period, the
PROMPTER server has been expanded to include challenge sets. Each challenge set is a
collection of challenges created by ESTATE. When players (real or simulated) play the game,
the game client fetches the latest challenge set from the server and presents the challenges to the
player. The integration with the server is now complete, we can now store and retrieve
challenges on the PROMPTER server as well as the underlying game data that makes up each
challenge.

The PROMPTER server currently stores game data as a list of mnemonics. Each mnemonic
contains a symbol, its meaning, and a list of distractor symbols and meanings (i.e. symbols that
are visually similar to the mnemonic's symbol and meanings that are conceptually similar to the
symbol's meaning.) Using this list of mnemonics, we can create game challenges that are made
up of a cue and four possible responses, one of which is correct.

1.3 Player Modeling and Challenge Generation Implementation

Now that we have updated the PROMPTER server to support third-party challenge specification,
our next task was to implement a testing framework to support simulated players, challenges, and
performance.

To meet these needs, we must implement (1) simulated players that can play challenges and (2) a
simulated PROMPTER client that can retrieve challenges from the server and post the simulated
player's actions. We will also be testing multiple challenge generation algorithms. In order to
expedite this process we have created a uniform interface for simulated players and challenge
generators to easily swap in and out different models and algorithms. These interfaces are
designed to be general enough to cover a wide range of implementations while still remaining

DISTRUBITION A. Approved for public release; distribution is unlimited

 4

fairly complete, so that each implementation acts as a 'black box' that can simply be fed
information and results can be returned. Each simulated player can load and save its internal
model for persistence, play a given challenge, and interpret feedback.

The simulated client, used by all simulated players, is a minimal implementation devoid of any
graphical elements. The client simply connects to the PROMPTER server, retrieves the latest
challenge sets, and presents the challenges to the player. The player makes a choice for each
challenge within the challenge set and receives feedback (i.e. the player is told which choice was
correct.) The simulated client then collects all the player data and posts it to the PROMPTER
client as a session and a collection of logs.

1.3.1 Player Models

With our framework in place, our next task was to develop a set of player models to be used for
testing. We developed two player model implementations, a simple player and advanced player.

Our first player model, dubbed Simple Player, is used primarily for code testing purposes. This
player randomly guesses when it does not know the answer, and permanently learns the correct
answer when it is given feedback. Since this player does not model human learning, its purpose
is only to verify and validate the ESTATE implementation behaves as expected.

Our second player model is a more advanced player. This player uses an association matrix to
make choices. The association matrix consists of a column for each symbol and a row for each
meaning. Each value [m,n] in the matrix represents the player's association that symbol m is the
correct answer for meaning n. When presented with a challenge, which consists of a question and
four possible answers, the player will find the values for each combination and choose the
symbol with the highest score. A number of learning algorithms can be implemented to adjust
the matrix's values when feedback is given. The initial learning algorithm implemented provides
a simple increase to the correct symbol-meaning association and a decrease to the incorrect
symbol-meaning associations.

1.3.2 Challenge Generation

Now that our Player Models were created, our next task was to develop different challenge
generation algorithms to compare against our coevolutionary approach. As an initial step, we
formulated a general challenge generator interface that each algorithm would provide behavior
for.

The challenge generator interface consists of methods for providing game data from which to
generate challenges, as well as player performance history. Depending on the challenge
generation algorithm, not all of this data may be used. In addition, methods are provides to begin
the challenge generation process and retrieves the generated challenges. Several challenge
generators have been implemented:

Random Generator - This generator generates N random challenges for each symbol in the list of
mnemonics. Player and challenge history are not used.

DISTRUBITION A. Approved for public release; distribution is unlimited

 5

Exhaustive Generator - This generator creates all possible combination of questions and
symbols. Player and challenge history are not used.

Spaced Repetition Generator - Player history is reviewed so that challenges not seen by the
player and challenges the player has previously failed are presented to the user before challenges
the player has successfully answered in the past. Both challenge segments are randomized before
they are combined into a single set of challenges. The Spaced Repetition Generator determines
the order in which challenges are presented where individual challenges can be created randomly
or according to a specific scheme.

During the indicated period, we also developed a challenge generation server, which will be used
for all challenge generation methods. The challenge generation server is responsible for
periodically retrieving player history and generating challenges. Once generated, the challenges
are posted to the PROMPTER server's challenge list. For testing purposes this can be run on-
demand, but there is also support for scheduling challenge generation. When scheduled,
challenge generation will occur on a separate thread than the main server loop, so that challenges
can be generated for multiple players. (This also prevents the server from 'freezing' when more
time-intensive challenge generation algorithms are run.) The server will eventually be designed
to run as a service, but currently runs as a stand-alone application.

1.3.3 Student-Test Coevolution Design

During the indicated period, we designed the ability to use student-test coevolution to construct
challenge sets. This will be compared to the alternative methods previously described above.
ESTATE’s coevolutionary challenge generation produces an optimized challenge set for a
particular trainee, given that trainee’s past performance. Figure 3 shows the design of this
process. First the Performance Data and Play History of a particular trainee is retrieved from the
server data store via the ESTATE-PROMPTER Interface to Server. The Trainee Modeler
uses this information to construct a model of the Trainee, including the trainee’s skills and
deficiencies, as well as what is unknown about potential trainee performance. The Trainee
Population Generator uses this Trainee Model to create an Initial Coevolution Population that
represents a sampling from the space of possible trainee skills. This initial population seeds the
Student-Test Coevolution that coevolves both the possible trainee strategies and the challenges
on which those strategies are tested. Because student-test coevolution searches the space of
challenges incrementally by iteratively testing thousands of small changes, each single
generation is only slightly improved over the previous, if at all. This process increases the
difficulty of the collection of challenges, monotonically, but the process must know when this
difficulty has reached the maximum to which the trainee can adjust, the Zone of Proximal
Development (ZPD). Therefore, at each generation, the ZPD Estimator examines the
Coevolution State to determine if the new challenges have reached sufficient difficulty for the
trainee to attempt. If so, the Challenge Set Extractor extracts the New Challenge Set from the
complete trace of coevolution, which may include many more iterations of challenges than can
be contained in one challenge set. The resultant challenge set is transmitted to the PROMPTER
server via the ESTATE-PROMPTER interface for the next play session.

DISTRUBITION A. Approved for public release; distribution is unlimited

 6

Figure 3: ESTATE challenge generation design

DISTRUBITION A. Approved for public release; distribution is unlimited

 7

2. Scheduled Items
In the next reporting period we plan to address the following items:

• Complete the ESTATE Coevolutionary Challenge Generation

• Examine the performance of ESTATE algorithms within the PROMPTER framework
using simulated experiments

• Develop a PROMPTER client for live participants using the ESTATE algorithms

• Continued pursuit of development and transition opportunities for the USMC Training
Simulations Division

Sincerely,

Brad Rosenberg
Principal Investigator

	1. Summary of Progress
	1.1 Transition Opportunities with USMC TECOM

	1. Summary of Progress
	1.2 Integrating ESTATE with PROMPTER Framework
	1.3 Player Modeling and Challenge Generation Implementation
	1.3.1 Player Models
	1.3.2 Challenge Generation
	1.3.3 Student-Test Coevolution Design

	2. Scheduled Items

